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1. (a) Let ε > 0. As f is uniformly continuous on A, there exists δ > 0 such
that x, y ∈ A satisfying |x−y| < δ implies |f(x)−f(y)| < ε. As (xn) is
cauchy, there exists N ∈ N such that n,m ≥ N implies |xn−xm| < δ.
Then, if n,m ≥ N , we have xn, xm ∈ A and |xn − xm| < δ, so that
|f(xn)− f(xm)| < ε by uniform continuity. This shows that f(xn) is
cauchy.

(b) No. Let A = (0,∞), xn = 1/n and f(x) = 1/x. Then (xn) ⊆ A is
cauchy, f is continuous on A but f(xn) = n is not cauchy.

2. (a) Let x be a limit point of E. Then there exists a sequence (xn)
contained in E \ {x} such that xn → x. Take any λ ∈ Λ. Then (xn)
is contained in Eλ as E ⊆ Eλ, so x is a limit point of Eλ, and as it is
closed, it follows that x ∈ Eλ. But λ was arbitrary so x ∈ E, which
shows that E is closed.

(b) Let x be a limit point of E. Then there exists a sequence (xn)
contained in E \ {x} such that xn → x. For each n ∈ N, xn ∈ Ei for
some i ∈ {1, 2, . . . ,m}. In fact, there exists an i0 ∈ {1, 2, . . . ,m} such
that Ei0 containes an infinite number of elements of the sequence
(xn) (if not the sequence would be finite). Let (xnk

) denote the
subsequence of (xn) obtained by deleting every term not in Ei0 . As
there are infinitely many terms left this subsequence is well defined.
Now, xn → x as n → ∞ implies xnk

→ x as k → ∞, and we know
that (xnk

) is contained in Ei0 \ {x}, so x is a limit point for Ei0 , but
it is closed so x ∈ Ei0 ⊆ E. This shows that E is closed.

(c) No,
⋃∞
n=1[1/n, 1] = (0, 1].

3. (a) By uniform convergence (using the definition for ε = 1 and n = N),
there exists an N ∈ N such that |fN (x)− f(x)| < 1 for all x ∈ A. fN
is bounded on A, so there exists M > 0 such that |fN (x)| ≤ M for
all x ∈ A. Then, |f(x)| = |f(x)− fN (x) + fN (x)| ≤ |f(x)− fN (x)|+
|fN (x)| < 1 +M , which shows that f is bounded.

(b) By uniform convergence, there exists anN ∈ N such that forall n ≥ N
and x ∈ A it follows that |fn(x) − f(x)| < 1. As f is bounded,
there exists M ′ > 0 such that |f(x)| ≤ M ′ for all x ∈ A. Then
|fn(x)| = |fn(x) − f(x) + f(x)| ≤ |fn(x) − f(x)| + |f(x)| < 1 + M ′.
Hence |fn(x)| < 1+M ′ for all n ≥ N and x ∈ A, to get the remaining
n we just use the boundedness of those and take the maximum of the
bounds. For n < N , fn is bounded so there exists Mn > 0 such that
|fn(x)| ≤Mn. Let M = max {M1,M2, . . . ,MN−1, 1 +M ′}. To show
that this indeed works, let n ∈ N and x ∈ A arbitrary. If n ≥ N ,
|fn(x)| < 1 + M ′ ≤ M , if n < N , |fn(x)| ≤ Mn ≤ M . This shows
that |fn(x)| ≤M for all n ∈ N and x ∈ A.
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4. (a) The pointwise limit f equals 0 if |x| < 1 and 1 if x = ±1. Each
fn is continuous on A while f is not, hence the convergence is not
uniform.

(b) The pointwise limit f is the zero function, and the convergence is

uniform. To see this, observe that |fn(x)− f(x)| = | arctan(nx)n(x2+1) | ≤
π
2n .

Let ε > 0, as π
2n → 0, there exists N ∈ N such that n ≥ N implies

π
2n < ε. Then, if n ≥ N and x ∈ R, it follows that |fn(x) − f(x)| ≤
π
2n < ε, which shows that the convergence is uniform on R.

(c) The pointwise limit is the zero function, but the convergence is not
uniform, to prove this we use the sequential criterion for non-uniform
convergence. Let nk = k and xk = ek − 1. Then nk →∞ as k →∞
and (xk) ⊆ A. Then |fnk

(xk) − f(xk)| = 1
k log (ek − 1 + 1) = k

k = 1
for all k ∈ N, so the convergence is not uniform on [0,∞).

5. (a) For any x ∈ [0, 1], we have |xn sin (nπx)/n2| ≤ 1/n2 and
∑

1/n2

converges, so the series converges uniformly on [0, 1] by the M -test.
Each fn is also continuous on [0, 1] so f is continuous on [0, 1] by
uniform convergence.

(b) Let x0 ∈ [0, 1). Pick R ∈ R such that x0 < R < 1. Then for any
x ∈ [0, R], observe that

|f ′n(x)| =
∣∣∣∣nxn−1 sin (nπx) + nπxn cos (nπx)

n2

∣∣∣∣ =
xn−1

n
| sin (nπx) + πx cos (nπx)|

≤ Rn−1

n
(| sin (nπx) + π|x|| cos (nπx)|) ≤ Rn−1

n
(1 + πR)

and
∑

Rn−1

n (1 + πR) converges by comparison with the geometric
series

∑
Rn−1(1 + πR), so

∑
f ′n(x) converges uniformly on [0, R],

hence f is differentiable on [0, R] so also at x0. But x0 ∈ [0, 1) was
arbitrary so this shows that f is differentiable on [0, 1).

6. (a) Let P be a partition of [0, 1]. Then for any subinterval [xk−1, xk],
there exists an x ∈ [0, 1] such that f(x) = 0, somk = inf {f(x) : x ∈ [xk−1, xk]} =
0, this shows that L(f, P ) = 0.

(b) in the interval [ε/2, 1], f has a finite number of discontinuities, say
M . These occur at x = 1, 1/2, . . . , 1/M . Then consider

Pε = {0, ε
2
,

1

M
− ε

4M
,

1

M
+

ε

4M
, . . . ,

1

2
− ε

4M
,

1

2
+

ε

4M
, 1− ε

4M
, 1}

For which it follows that U(f, Pε) < ε.

(c) from (a) and (b) it follows that f is integrable on [0, 1], so
∫ 1

0
f =

L(f) = sup {L(f, P ) : P ∈ P} = sup {0 : P ∈ P} = 0.
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