Uitwerking Herkansing Analyse 8 Feb 2013

1. (a) Let $\epsilon>0$. As f is uniformly continuous on A, there exists $\delta>0$ such that $x, y \in A$ satisfying $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$. As $\left(x_{n}\right)$ is cauchy, there exists $N \in \mathbb{N}$ such that $n, m \geq N$ implies $\left|x_{n}-x_{m}\right|<\delta$. Then, if $n, m \geq N$, we have $x_{n}, x_{m} \in A$ and $\left|x_{n}-x_{m}\right|<\delta$, so that $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\epsilon$ by uniform continuity. This shows that $f\left(x_{n}\right)$ is cauchy.
(b) No. Let $A=(0, \infty), x_{n}=1 / n$ and $f(x)=1 / x$. Then $\left(x_{n}\right) \subseteq A$ is cauchy, f is continuous on A but $f\left(x_{n}\right)=n$ is not cauchy.
2. (a) Let x be a limit point of E. Then there exists a sequence $\left(x_{n}\right)$ contained in $E \backslash\{x\}$ such that $x_{n} \rightarrow x$. Take any $\lambda \in \Lambda$. Then $\left(x_{n}\right)$ is contained in E_{λ} as $E \subseteq E_{\lambda}$, so x is a limit point of E_{λ}, and as it is closed, it follows that $x \in E_{\lambda}$. But λ was arbitrary so $x \in E$, which shows that E is closed.
(b) Let x be a limit point of E. Then there exists a sequence $\left(x_{n}\right)$ contained in $E \backslash\{x\}$ such that $x_{n} \rightarrow x$. For each $n \in \mathbb{N}, x_{n} \in E_{i}$ for some $i \in\{1,2, \ldots, m\}$. In fact, there exists an $i_{0} \in\{1,2, \ldots, m\}$ such that $E_{i_{0}}$ containes an infinite number of elements of the sequence $\left(x_{n}\right)$ (if not the sequence would be finite). Let $\left(x_{n_{k}}\right)$ denote the subsequence of $\left(x_{n}\right)$ obtained by deleting every term not in $E_{i_{0}}$. As there are infinitely many terms left this subsequence is well defined. Now, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ implies $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$, and we know that $\left(x_{n_{k}}\right)$ is contained in $E_{i_{0}} \backslash\{x\}$, so x is a limit point for $E_{i_{0}}$, but it is closed so $x \in E_{i_{0}} \subseteq E$. This shows that E is closed.
(c) No, $\bigcup_{n=1}^{\infty}[1 / n, 1]=(0,1]$.
3. (a) By uniform convergence (using the definition for $\epsilon=1$ and $n=N$), there exists an $N \in \mathbb{N}$ such that $\left|f_{N}(x)-f(x)\right|<1$ for all $x \in A$. f_{N} is bounded on A, so there exists $M>0$ such that $\left|f_{N}(x)\right| \leq M$ for all $x \in A$. Then, $|f(x)|=\left|f(x)-f_{N}(x)+f_{N}(x)\right| \leq\left|f(x)-f_{N}(x)\right|+$ $\left|f_{N}(x)\right|<1+M$, which shows that f is bounded.
(b) By uniform convergence, there exists an $N \in \mathbb{N}$ such that forall $n \geq N$ and $x \in A$ it follows that $\left|f_{n}(x)-f(x)\right|<1$. As f is bounded, there exists $M^{\prime}>0$ such that $|f(x)| \leq M^{\prime}$ for all $x \in A$. Then $\left|f_{n}(x)\right|=\left|f_{n}(x)-f(x)+f(x)\right| \leq\left|f_{n}(x)-f(x)\right|+|f(x)|<1+M^{\prime}$. Hence $\left|f_{n}(x)\right|<1+M^{\prime}$ for all $n \geq N$ and $x \in A$, to get the remaining n we just use the boundedness of those and take the maximum of the bounds. For $n<N, f_{n}$ is bounded so there exists $M_{n}>0$ such that $\left|f_{n}(x)\right| \leq M_{n}$. Let $M=\max \left\{M_{1}, M_{2}, \ldots, M_{N-1}, 1+M^{\prime}\right\}$. To show that this indeed works, let $n \in \mathbb{N}$ and $x \in A$ arbitrary. If $n \geq N$, $\left|f_{n}(x)\right|<1+M^{\prime} \leq M$, if $n<N,\left|f_{n}(x)\right| \leq M_{n} \leq M$. This shows that $\left|f_{n}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and $x \in A$.
4. (a) The pointwise limit f equals 0 if $|x|<1$ and 1 if $x= \pm 1$. Each f_{n} is continuous on A while f is not, hence the convergence is not uniform.
(b) The pointwise limit f is the zero function, and the convergence is uniform. To see this, observe that $\left|f_{n}(x)-f(x)\right|=\left|\frac{\arctan (n x)}{n\left(x^{2}+1\right)}\right| \leq \frac{\pi}{2 n}$. Let $\epsilon>0$, as $\frac{\pi}{2 n} \rightarrow 0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $\frac{\pi}{2 n}<\epsilon$. Then, if $n \geq N$ and $x \in \mathbb{R}$, it follows that $\left|f_{n}(x)-f(x)\right| \leq$ $\frac{\pi}{2 n}<\epsilon$, which shows that the convergence is uniform on \mathbb{R}.
(c) The pointwise limit is the zero function, but the convergence is not uniform, to prove this we use the sequential criterion for non-uniform convergence. Let $n_{k}=k$ and $x_{k}=e^{k}-1$. Then $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and $\left(x_{k}\right) \subseteq A$. Then $\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right|=\frac{1}{k} \log \left(e^{k}-1+1\right)=\frac{k}{k}=1$ for all $k \in \mathbb{N}$, so the convergence is not uniform on $[0, \infty)$.
5. (a) For any $x \in[0,1]$, we have $\left|x^{n} \sin (n \pi x) / n^{2}\right| \leq 1 / n^{2}$ and $\sum 1 / n^{2}$ converges, so the series converges uniformly on $[0,1]$ by the M-test. Each f_{n} is also continuous on $[0,1]$ so f is continuous on $[0,1]$ by uniform convergence.
(b) Let $x_{0} \in[0,1)$. Pick $R \in \mathbb{R}$ such that $x_{0}<R<1$. Then for any $x \in[0, R]$, observe that

$$
\begin{aligned}
\left|f_{n}^{\prime}(x)\right| & =\left|\frac{n x^{n-1} \sin (n \pi x)+n \pi x^{n} \cos (n \pi x)}{n^{2}}\right|=\frac{x^{n-1}}{n}|\sin (n \pi x)+\pi x \cos (n \pi x)| \\
& \leq \frac{R^{n-1}}{n}(|\sin (n \pi x)+\pi| x| | \cos (n \pi x) \mid) \leq \frac{R^{n-1}}{n}(1+\pi R)
\end{aligned}
$$

and $\sum \frac{R^{n-1}}{n}(1+\pi R)$ converges by comparison with the geometric series $\sum R^{n-1}(1+\pi R)$, so $\sum f_{n}^{\prime}(x)$ converges uniformly on $[0, R]$, hence f is differentiable on $[0, R]$ so also at x_{0}. But $x_{0} \in[0,1)$ was arbitrary so this shows that f is differentiable on $[0,1)$.
6. (a) Let P be a partition of $[0,1]$. Then for any subinterval $\left[x_{k-1}, x_{k}\right]$, there exists an $x \in[0,1]$ such that $f(x)=0$, so $m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=$ 0 , this shows that $L(f, P)=0$.
(b) in the interval $[\epsilon / 2,1], f$ has a finite number of discontinuities, say M. These occur at $x=1,1 / 2, \ldots, 1 / M$. Then consider
$P_{\epsilon}=\left\{0, \frac{\epsilon}{2}, \frac{1}{M}-\frac{\epsilon}{4 M}, \frac{1}{M}+\frac{\epsilon}{4 M}, \ldots, \frac{1}{2}-\frac{\epsilon}{4 M}, \frac{1}{2}+\frac{\epsilon}{4 M}, 1-\frac{\epsilon}{4 M}, 1\right\}$
For which it follows that $U\left(f, P_{\epsilon}\right)<\epsilon$.
(c) from (a) and (b) it follows that f is integrable on $[0,1]$, so $\int_{0}^{1} f=$ $L(f)=\sup \{L(f, P): P \in \mathcal{P}\}=\sup \{0: P \in \mathcal{P}\}=0$.

